
jetstream Documentation
Release 1.0

Petri Savolainen

December 02, 2013

Contents

1 Overview 3

2 Installation 5

3 Usage 7
3.1 Configuring Jetstream . 7
3.2 Using the Jetstream cli . 8
3.3 Embedding Jetstream . 9

4 Extending Jetstream 11
4.1 Architecture overview . 11
4.2 Implementing components . 11
4.3 Registering components . 13

5 Contributing 15
5.1 Types of Contributions . 15
5.2 Get Started! . 16
5.3 Pull Request Guidelines . 17
5.4 Tips . 17

6 Credits 19
6.1 Development Lead . 19
6.2 Contributors . 19

7 History 21
7.1 0.1.0 (2013-11-5) . 21

8 Indices and tables 23

i

ii

jetstream Documentation, Release 1.0

Contents:

Contents 1

jetstream Documentation, Release 1.0

2 Contents

CHAPTER 1

Overview

Jetstream provides a configurable data batch processing tool and a framework for data integration applications, ie.
hooking incoming and outgoing data streams into any Python application and processing the data in various ways.

It does not enforce a particular event loop, http server or client library, SQL library, ORM or such. Those are all
outside its scope. Instead, Jetstream can be extended by following kinds of data processing components:

• inputs for reading data from various sources

• inspectors for e.g. checking data conformity

• transformers for modifying data and/or creating stuff from it

• outputs for receiving data and possibly writing it somewhere else

Some common built-in components are included and it’s easy to write more. Jetstream then provides facilities for
running data processing pipelines composed of the components, by the configuration.

Both the components and the pipelines are configured using YAML. No programming is required to process data
using Jetstream. On the other hand, Jetstream is easy to extend and/or incorporate into your own app.

• Free software: GPL3 licensed

• Documentation: http://jetstream.rtfd.org.

3

http://badge.fury.io/py/jetstream
https://travis-ci.org/koodaamo/jetstream
https://crate.io/packages/jetstream?version=latest
http://jetstream.rtfd.org

jetstream Documentation, Release 1.0

4 Chapter 1. Overview

CHAPTER 2

Installation

At the command line:

$ easy_install jetstream

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv jetstream
$ pip install jetstream

Next, add a configuration file, by default named config.yaml and you can proceed to configuring Jetstream for use.

5

jetstream Documentation, Release 1.0

6 Chapter 2. Installation

CHAPTER 3

Usage

There are two ways to use Jetstream: either to perform some tasks on your data using the ‘jet’ command-line tool
provided by Jetstream, or as a part of your own application.

In either case, Jetstream must first be configured, using YAML. The configuration tells Jetstream what components to
instantiate and how, and how to combine them into one or more pipes runnable by Jetstream.

3.1 Configuring Jetstream

The YAML configuration consists of two or more sections declaring the components to be used (at least an Input and
Output) and a section declaring the pipes.

3.1.1 Configuring components

Each component is configured under a component type section which is either ‘inputs’, ‘introspectors’, ‘transformers’,
or ‘outputs’. Under the type section, each component is listed as:

<component title>: &<component_id>
description: <some description here>
use: <a fully-qualified Python dotted name of the factory>

The description field is optional but recommended. Also note that the component_id can not include spaces.

An example configuration of an Input component:

inputs:
my MySQL data source: &sqlsource
description: an example MySQL data source
use: mypackage.mymodule.get_my_sql_source

3.1.2 Configuring pipes

Each pipe is configured under ‘pipes’ section, and is of the form:

<pipe title>:
- *<component_id>
- *<component2_id>

7

http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/YAML

jetstream Documentation, Release 1.0

Where there can be an arbitrary number of component id’s listed.

An example configuration of a pipe with two components:

pipes:
example pipe:

- *sqlsource
- *csvoutput

Any number of components can be freely arranged into a pipe, as long as it is started by an Input, and ends in an
Output - although if there’s no Output configured, Jetstream will add a standard Output that simply prints out the data
records.

3.1.3 Full example

Here is the full configuration file from Jetstream tests:

inputs:
dummy source: &source

description: a dummy source
use: tests.components.Input

inspectors:
dummy validator: &validate

description: a dummy validator
use: tests.components.Validator

transformers:
dummy mapper: &map

description: a basic dummy mapper
use: jetstream.util.FieldMapper
map:

- number: Numero
- description: Selite
- amount: Summa

dummy constructor: &construct
description: a simple object constructor
use: jetstream.util.KlassConstructor

outputs:
dummy subscriber: &subscribe

description: a dummy subscriber
use: tests.components.Subscriber

pipes:
dummy pipe:

- *source
- *map
- *validate

3.2 Using the Jetstream cli

Todo

write the cli & docs

8 Chapter 3. Usage

jetstream Documentation, Release 1.0

3.3 Embedding Jetstream

To use Jetstream in your own project:

import jetstream

Todo

explain how to embed Jetstream

3.3. Embedding Jetstream 9

jetstream Documentation, Release 1.0

10 Chapter 3. Usage

CHAPTER 4

Extending Jetstream

The primary means of extending Jetstream is by developing new data components, which is relatively easy. The
architecture overview describes how data components fit in Jetstream & what their role is.

4.1 Architecture overview

This diagram illustrates how Jetstream provides for running a configurable sequence of data-processing steps, imple-
mented as a ‘pipe‘ of Input, Inspector, Transformer and Output components.

Jetstream runs component pipes using what is called a Streamer.

4.2 Implementing components

If you’re not sure what kind of component to develop, maybe it’s useful to read on some thoughts on what different
components can be used for, see cases.

To create a component, Jetstream needs to be able to call a component factory, passing it two parameters:

1. configuration settings (a mapping)

11

jetstream Documentation, Release 1.0

2. the data stream (an iterable)

It is the responsibility of the factory to return the component; a component is anything that implements the iterator
protocol, producing the data stream. Such as for example a Python generator function.

In practice, it is convenient to implement the factory and the component using a single class that accepts the configu-
ration settings and the stream as parameters to its constructor, implements an __iter__ method that yields (making the
method a generator), and implements __call__ so that it returns self.

Which is precisely what these (abstract) base classes in the jetstream.base module provide.

They simply implement a passthru component that does nothing to the stream.

Note: For a minimal implementation, override the __iter__ method of a base component with a generator function
(anything that yields). The stream parameter (passed to the component at initialization) is accessible at self._stream.

Todo

invent type identification of generator function components so that they can by used as components, ie. without
subclassing

4.2.1 Input components

In addition to implementing some data reading capability, Input components need to provide an indexer that returns a
mapping of data to be indexed.

the get_key method that should return a (attributename, attributetype) tuple. Jetstream will use that information to
index the data, associating it with the the Streamer run, which in turn logs information such as configuration, source
and timestamp.

The component should be able to handle the data stream regardless of how many records it provides.

since the number of records that can be read may be limited in many ways; for example by the data source:

• data may contain a fixed number of records by nature

• there may be usage limits to data volume or time of day

• there is an error at data source

... or by user context:

• data may be limited by authentication > authorization

• only a subset of available data is requested by query terms

• user may want a smaller number of records than what is available

... or due to an error occurring at the data source or network:

• data stream may unexpectedly terminate, or may arrive only partially

It is of course also possible that data is available ad infinitum.

Todo

capability declarations related to stream reading abilities

12 Chapter 4. Extending Jetstream

jetstream Documentation, Release 1.0

4.2.2 Inspector components

4.2.3 Transformer components

4.2.4 Output components

and an Output is allowed to return an exhausted iterator.

4.3 Registering components

Components don’t necessarily need to be registered; they can always be referred to using the use field of the YAML
component configuration.

However, registering components makes it easier to use them.

Jetstream uses the standard setuptools entry points API for pluggable component registrations. Each entry point is
expected to resolve to a component factory that is a callable accepting two parameters:

1. configuration settings (a mapping)

2. the data streamer (an iterable)

The entry points to register under are as follows, one for each component type:

• jetstream.input

• jetstream.inspector

• jetstream.transformer

• jetstrem.output

Here is an example entry point declaration to go into your package’s setup.py:

entry_points = {
’jetstream.input’: [

’NoSQLInput = jetstream.nosqlinput.component:get_component’
]

},

This would register the get_component function found in module jetstream.nosqlinput.component as the factory for an
Input component called “NoSQLInput”.

4.3. Registering components 13

jetstream Documentation, Release 1.0

14 Chapter 4. Extending Jetstream

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.
You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Contribute new data components

Please consider contributing any data components your develop back to the Jetstream community.

In the naming of any contributed component package, please use form jetstream.<title><type> where <type> is
the component type (input/ introspect/transform/output), and <title> describes the functionality. For example ‘jet-
stream.podioinput’ would be the name of an Input component that reads data from the Podio (http://www.podio.com)
service via its HTTP API.

Also, please add “jetstream” as a package keyword.

5.1.2 Report Bugs

Report bugs at https://github.com/koodaamo/jetstream/issues.

If you are reporting a bug, please include:

• Your operating system name and version, Python version and Jetstream version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.3 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

15

http://www.podio.com
https://github.com/koodaamo/jetstream/issues

jetstream Documentation, Release 1.0

5.1.4 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

5.1.5 Write Documentation

Jetstream could always use more documentation, whether as part of the official jetstream docs, in docstrings, or even
on the web in blog posts, articles, and such.

Look through the GitHub issues for features. Anything tagged with “docs” is open to whoever wants to add the
documentation.

5.1.6 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/koodaamo/jetstream/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up jetstream for local development.

1. Fork the jetstream repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/jetstream.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv jetstream
$ cd jetstream/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python
versions with tox:

$ flake8 jetstream tests
$ python setup.py test

$ tox

To get flake8 and tox, just pip install them into your virtualenv.

16 Chapter 5. Contributing

https://github.com/koodaamo/jetstream/issues

jetstream Documentation, Release 1.0

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

5.3 Pull Request Guidelines

Before you submit a pull request, please check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Add the new feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, and for PyPy. Check https://travis-
ci.org/koodaamo/jetstream/pull_requests and make sure that the tests pass for all supported Python versions.

5.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_jetstream

5.3. Pull Request Guidelines 17

https://travis-ci.org/koodaamo/jetstream/pull_requests
https://travis-ci.org/koodaamo/jetstream/pull_requests

jetstream Documentation, Release 1.0

18 Chapter 5. Contributing

CHAPTER 6

Credits

6.1 Development Lead

• Petri Savolainen <petri.savolainen@koodaamo.fi>

6.2 Contributors

None yet. Why not be the first?

19

mailto:petri.savolainen@koodaamo.fi

jetstream Documentation, Release 1.0

20 Chapter 6. Credits

CHAPTER 7

History

7.1 0.1.0 (2013-11-5)

• First release on PyPI.

21

jetstream Documentation, Release 1.0

22 Chapter 7. History

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

• glossary

23

	Overview
	Installation
	Usage
	Configuring Jetstream
	Using the Jetstream cli
	Embedding Jetstream

	Extending Jetstream
	Architecture overview
	Implementing components
	Registering components

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2013-11-5)

	Indices and tables

