

 Navigation

 	
 index

 	
 next |

 	jetstream 1.0 documentation

Welcome to Jetstream documentation!

Contents:

	Overview

	Installation

	Usage
	Configuring Jetstream

	Using the Jetstream cli

	Embedding Jetstream

	Extending Jetstream
	Architecture overview

	Implementing components

	Registering components

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2013-11-5)

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	jetstream 1.0 documentation

Overview

[image: https://badge.fury.io/py/jetstream.png]
 [http://badge.fury.io/py/jetstream][image: https://travis-ci.org/koodaamo/jetstream.png?branch=master]
 [https://travis-ci.org/koodaamo/jetstream][image: https://pypip.in/d/jetstream/badge.png]
 [https://crate.io/packages/jetstream?version=latest]Jetstream provides a configurable data batch processing tool and a framework
for data integration applications, ie. hooking incoming and
outgoing data streams into any Python application and processing the data in
various ways.

It does not enforce a particular event loop, http server or client library,
SQL library, ORM or such. Those are all outside its scope. Instead, Jetstream
can be extended by following kinds of data processing components:

	inputs for reading data from various sources

	inspectors for e.g. checking data conformity

	transformers for modifying data and/or creating stuff from it

	outputs for receiving data and possibly writing it somewhere else

Some common built-in components are included and it’s easy to write more.
Jetstream then provides facilities for running data processing pipelines
composed of the components, by the configuration.

Both the components and the pipelines are configured using YAML. No
programming is required to process data using Jetstream. On the other hand,
Jetstream is easy to extend and/or incorporate into your own app.

	Free software: GPL3 licensed

	Documentation: http://jetstream.rtfd.org.

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	jetstream 1.0 documentation

Installation

At the command line:

$ easy_install jetstream

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv jetstream
$ pip install jetstream

Next, add a configuration file, by default named config.yaml and you can
proceed to configuring Jetstream for use.

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	jetstream 1.0 documentation

Usage

There are two ways to use Jetstream: either to perform some tasks on your data
using the ‘jet’ command-line tool provided by Jetstream, or as a part of your
own application.

In either case, Jetstream must first be configured, using YAML [http://en.wikipedia.org/wiki/YAML]. The
configuration tells Jetstream what components to instantiate and how, and how to
combine them into one or more pipes runnable by Jetstream.

Configuring Jetstream

The YAML [http://en.wikipedia.org/wiki/YAML] configuration consists of two or more sections declaring the
components to be used (at least an Input and Output) and a
section declaring the pipes.

Configuring components

Each component is configured under a component type section which is
either ‘inputs’, ‘introspectors’, ‘transformers’, or ‘outputs’. Under the type
section, each component is listed as:

<component title>: &<component_id>
 description: <some description here>
 use: <a fully-qualified Python dotted name of the factory>

The description field is optional but recommended. Also note that the
component_id can not include spaces.

An example configuration of an Input component:

inputs:
 my MySQL data source: &sqlsource
 description: an example MySQL data source
 use: mypackage.mymodule.get_my_sql_source

Configuring pipes

Each pipe is configured under ‘pipes’ section, and is of the form:

<pipe title>:
 - *<component_id>
 - *<component2_id>

Where there can be an arbitrary number of component id’s listed.

An example configuration of a pipe with two components:

pipes:
 example pipe:
 - *sqlsource
 - *csvoutput

Any number of components can be freely arranged into a pipe, as long as
it is started by an Input, and ends in an Output - although if
there’s no Output configured, Jetstream will add a standard Output that simply
prints out the data records.

Full example

Here is the full configuration file from Jetstream tests:

inputs:
 dummy source: &source
 description: a dummy source
 use: tests.components.Input

inspectors:
 dummy validator: &validate
 description: a dummy validator
 use: tests.components.Validator

transformers:
 dummy mapper: &map
 description: a basic dummy mapper
 use: jetstream.util.FieldMapper
 map:
 - number: Numero
 - description: Selite
 - amount: Summa
 dummy constructor: &construct
 description: a simple object constructor
 use: jetstream.util.KlassConstructor

outputs:
 dummy subscriber: &subscribe
 description: a dummy subscriber
 use: tests.components.Subscriber

pipes:
 dummy pipe:
 - *source
 - *map
 - *validate

Using the Jetstream cli

Todo

write the cli & docs

Embedding Jetstream

To use Jetstream in your own project:

import jetstream

Todo

explain how to embed Jetstream

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	jetstream 1.0 documentation

Extending Jetstream

The primary means of extending Jetstream is by developing new data components,
which is relatively easy. The architecture overview describes how
data components fit in Jetstream & what their role is.

Architecture overview

This diagram illustrates how Jetstream provides for running
a configurable sequence of data-processing steps, implemented as a
‘pipe‘ of Input, Inspector, Transformer
and Output components.

[image: _images/overview.png]

Jetstream runs component pipes using what is called a Streamer.

Implementing components

If you’re not sure what kind of component to develop, maybe it’s useful to read
on some thoughts on what different components can be used for, see Data component use cases.

To create a component, Jetstream needs to be able to call a component factory,
passing it two parameters:

	configuration settings (a mapping)

	the data stream (an iterable)

It is the responsibility of the factory to return the component; a component is
anything that implements the iterator protocol, producing
the data stream. Such as for example a Python generator function.

In practice, it is convenient to implement the factory and the component using
a single class that accepts the configuration settings and the stream as
parameters to its constructor, implements an __iter__ method that yields
(making the method a generator), and implements __call__ so that it returns
self.

Which is precisely what these (abstract) base classes in the jetstream.base
module provide.

They simply implement a passthru component that
does nothing to the stream.

Note

For a minimal implementation, override the __iter__ method of a base
component with a generator function (anything that yields). The stream
parameter (passed to the component at initialization) is accessible at
self._stream.

Todo

invent type identification of generator function components so that
they can by used as components, ie. without subclassing

Input components

In addition to implementing some data reading capability, Input components need
to provide an indexer that returns a mapping of data to be indexed.

the get_key method that should return a
(attributename, attributetype) tuple. Jetstream will use that information to
index the data, associating it with the the Streamer run, which in turn logs
information such as configuration, source and timestamp.

The component should be able to handle the data stream regardless of how many
records it provides.

since the number of records that can be read may be limited
in many ways; for example by the data source:

	data may contain a fixed number of records by nature

	there may be usage limits to data volume or time of day

	there is an error at data source

... or by user context:

	data may be limited by authentication > authorization

	only a subset of available data is requested by query terms

	user may want a smaller number of records than what is available

... or due to an error occurring at the data source or network:

	data stream may unexpectedly terminate, or may arrive only partially

It is of course also possible that data is available ad infinitum.

Todo

capability declarations related to stream reading abilities

Inspector components

Transformer components

Output components

and an Output is
allowed to return an exhausted iterator.

Registering components

Components don’t necessarily need to be registered; they can always be
referred to using the use field of the YAML component configuration.

However, registering components makes it easier to use them.

Jetstream uses the standard setuptools entry points API for pluggable component
registrations. Each entry point is expected to resolve to a component factory
that is a callable accepting two parameters:

	configuration settings (a mapping)

	the data streamer (an iterable)

The entry points to register under are as follows, one for each component type:

	jetstream.input

	jetstream.inspector

	jetstream.transformer

	jetstrem.output

Here is an example entry point declaration to go into your package’s setup.py:

entry_points = {
 'jetstream.input': [
 'NoSQLInput = jetstream.nosqlinput.component:get_component'
]
},

This would register the get_component function found in module
jetstream.nosqlinput.component as the factory for an Input component called
“NoSQLInput”.

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	jetstream 1.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given. You can contribute in many
ways:

Types of Contributions

Contribute new data components

Please consider contributing any data components your develop back to the
Jetstream community.

In the naming of any contributed component package, please use form
jetstream.<title><type> where <type> is the component type (input/
introspect/transform/output), and <title> describes the functionality.
For example ‘jetstream.podioinput’ would be the name of an Input component that
reads data from the Podio (http://www.podio.com) service via its HTTP API.

Also, please add “jetstream” as a package keyword.

Report Bugs

Report bugs at https://github.com/koodaamo/jetstream/issues.

If you are reporting a bug, please include:

	Your operating system name and version, Python version and Jetstream version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Jetstream could always use more documentation, whether as part of the
official jetstream docs, in docstrings, or even on the web in blog posts,
articles, and such.

Look through the GitHub issues for features. Anything tagged with “docs”
is open to whoever wants to add the documentation.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/koodaamo/jetstream/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up jetstream for local development.

	Fork the jetstream repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/jetstream.git

3. Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv jetstream
$ cd jetstream/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

 $ flake8 jetstream tests
 $ python setup.py test
 $ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, please check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Add the
new feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and for PyPy. Check
https://travis-ci.org/koodaamo/jetstream/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_jetstream

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	jetstream 1.0 documentation

Credits

Development Lead

	Petri Savolainen <petri.savolainen@koodaamo.fi>

Contributors

None yet. Why not be the first?

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	jetstream 1.0 documentation

History

0.1.0 (2013-11-5)

	First release on PyPI.

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	jetstream 1.0 documentation

Index

 C
 | D
 | I
 | O
 | P
 | S
 | T

C

 	

 	component

D

 	

 	data component

 	data components

 	data destination

 	data endpoint

 	

 	data pipe

 	data source

 	data stream

I

 	

 	Input

 	

 	Inspector

O

 	

 	Output

P

 	

 	pipe

 	

 	pipes

S

 	

 	streamer

T

 	

 	Transformer

 Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

 _static/overview.png
PlPE
bam
SOVRCE

et INTROSPECTOR TRANSTORNER

DATA COMPONENTS

et

bam
besnwaTion

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		jetstream 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_images/overview.png
PlPE
bam
SOVRCE

Tueur Tuspecron Temwsrormee

DATA COMPONENTS

bam
DesnwaTion

_static/up.png

glossary.html

 Navigation

 		
 index

 		jetstream 1.0 documentation »

Glossary

		data stream

		collection of data records produced and consumed by
data components

		data source
data destination
data endpoint

		where you get data from or write to: SQL database, CSV file, REST api ...

		data components
data component
component

		Components are the basic building blocks of Jetstream pipes. There
are four types of (data) components: Input, Inspector,
Transformer or Output components.

		data pipe
pipes
pipe

		a “master” component composed of several data components piped
together and run in order by a Jetstream Streamer

		streamer

		Part of Jetstream framework that:

		composes a pipe from two or more components

		adds instrumentation in between every ‘slot’ or ‘connection’ between
two components

		runs the pipe, indexing received records, performing logging and
producing a report of the run

		Input

		a component reading data from an data source, for example
from an SQL database

		Inspector

		a component that analyses the data stream and performs actions
depending on data content; for example a validating Introspector can
raise an error upon seeing incomplete data

		Transformer

		a component that modifies a data stream

		Output

		a component writing to a data source, for example to a CSV
file

 © Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

cases.html

 Navigation

 		
 index

 		jetstream 1.0 documentation »

Data component use cases

Each component type has clearly defined roles with responsibilities and
constraints that should be followed in order to fully benefit from functionality
offered by Jetstream.

Here are some notes on how to choose the right component type for each
use case, and how to combine components to achieve desired result when it’s not
possible to get that from a single component.

Input components

An Input connects to a data source and produces a data
stream. It does nothing else. Given that, an input component is typically set
as the first component of the pipe. In that case, there is no data pipe
passed to it as an input parameter.

However, if a pipe is configured so that the input component is not the first
one, it receives a data pipe, and can then be used to implement following
actions on received data:

		append = add more records to the end of data stream

		mix = add records interleaved with existing records

An input MAY add records that differ in format from those passed to it; those
records can later be separated, if needed, using the input id associated with
each data item.

Todo

add reference to retrieving and using input id label

An input MAY NOT modify the structure or content of data passed to it. To modify
data in any way, always use a transformer.

For developing inputs, see Input components.

Inspector components

An Inspector reads the data but does not touch (or output) it.
However it has control over the processing of the data stream,
and may include parts of data within its own non-data output. An inspector can
thus perform for example one or more of the following actions:

		validate data

		flag it

		log events

		alert user

		summarize data

		analyze it

For developing inspectors, see Inspector components.

Transformer components

Transformer modifies data and passes it on, and may also drop records.
Thus a transformer can be naturally used to:

		rearrange fields

		filter out data records

		convert data from a type to another

		modify data labels and/or values

A transformer may also add to the data. It is however limited to using the data
it has received as input, including any information available within the
Jetstream system, such as configuration information passed to the transformer.
It may not fetch data on its own from any other, external data source.

For developing Transformers, see Transformer components.

Output components

An Output connects to a :term:`data destination` and writes data to
it. So the end of the pipe always has some sort of Output configured, even if
it is simply some code that reads and prints out the data, for example.

When not configured as pipe end, an output component can be used to:

		copy data to another destination

Todo

add loop-back data source/destination functionality to Jetstream

For developing Outputs, see Output components.

 © Copyright 2013, Petri Savolainen.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

